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NATIONAL ADVISORY GOMMITTEE FOR ABRONAUTICS

TECENICAL NOTE NO, 961

THEE "LIMITING EINE" IN MIXED SUBSONIC AND
SUPERSONIC FLOW OF GOMPRESSIBLE FLUIDS

By Hsue—~shen Tsien

I+ is well known that the vorticlty for any fluld element
ig constant if the fluid is non-viscous and the change of
state of the fluld is isentropic, When a solid body 1is placed
in a uniform stream, the flow far shead of the body 1s irrota—
tional, Then if the flow is further assumed to be isentropic,
the vortiecity will be zero over the whole field of flow, 'In
other words, the flow is irrotational, For such flow over a
golid body, it is shown by Theodorsen (refercnce 1) that the
s0lid body experiences no resistance, If the fluid has a
small viscosity, its effect will be limited in the boundary
layer over the golid body and the hody will have a drag due
to the skin friction, This type of essentially isentropic ir-
rotational flow is generally observed for a streamlined body
placed in a uniform stream, if the vocloecity of the stream is
kept below the so—-called "eritical speed,’

At the critical speed or rather at a certain value of the
ratio of the veloclty of the uvndisturbed flow zand the corre-
sponding velocity of sound, shock waves appear, This phonome—
non ig called the “compressibility burble,¥ Along a shock

wave, the change of statc of the fluid is no longer isentropilc,

although still adiabatic, This results in an increase in en—

tropy of the fluid and generally introduces vorticity In an ™
originally irrotational flow, The increase in entropy of the ~

fluid is, of course, the consequence of changing part of the
mechanlical energy into heat eonergy. In other words, tho part
of fluid affected by the shock wave has a reduced mochanical
enorgy, Therefore, with the appearancsc of shock waves, the
wake of the streamline body 1s very much widened, and tho
drag incroasos drastically. Furthermore, the accompanying
change 1n the pressure dilstribution over the body changes tne

aerodynamic moment acting on it and in the case of an airfoilﬂ'

decreases the lift force,
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All these consequences of the breakdown of isentropic
irrotational flow are generally undesirable in applied acro—
dynamics, Its occurrence should be delayed as much as possi-
ble by modifying the shape or contour of the body, However,
such endeavor will be very much facilltated 1f the cause or
the eriterion for the breakdown can be found figst, .

CRITERION FOR THE BREAKDOWN OF
ISENTROPIC IRROTATIONAL FLOW

Taylor and Sharman (reference 2) calculated the succes— -
sive approximations to the flow around an airfoil by means of
an electrolytic tank, They found that when the maximum veloc-—
ity 4in the flow reaches the local velocity of sound, the con—
vergence of the successlive steps seems to break down, This
fact led to the identification of critical speed or critical
Mach number with the, Mach number of the undisturbed flow for
which the local velocity at some point reaches the loecal vel—
ocity of sound, However, there i1s no mathematical proof for
tho coincidence of the critical Mach number so defined and
the breakdown of isentropic irrotational flow, Turthermore,
such a dofinition for critical Mach number implies that a
transitlon from a veloclty loss than that of sound, or sub-
sonic velocity, to a velocity greater than that of sound, or
supersonic velocity, does not occur in isentroplc irrotational
flow, On the other hand, Taylor (reference 3) and others
found solutions for which such a transition occitFrs, Further—
more, Binnie and Hooker (reference 4) have shown that at
least for the case of spiral flow the method of successive
approximetion is a convcorgent one even for supefsonic vel-
ocitics, With these facts in mind, it may be concluded that
the idontification of critical speed with loecal supersonic
velocity cannot be corrsect, ‘

Taylorls invegtigation on the spiral flow (reference 3)
indicates that there is a line in the flow field where the’
meximum velocity 1s reached and beyond which the flow cannot
continue, Tollmien -in a subsequent paper (reference 5) called
such lines limiting lines, The velocity at the limiting line
is never subsonic, However, the true characteristics of such
limiting lines and their significance were not investigated
by Tollmiocn at that time, Recenily Ringledb (rcecference 6) ob~—
tained another particular solution of isentropic irrotationmal
flow in which the maxzimum velocity reached is approximately
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twice the local sound veloclity, UTor this flow also a limit-
ing lino appeared beyond which the flow cannot continue,
Furthermore, he found the singular character of the limiting
line, that is, infinite acceleration and infinite pressure
gradient, Von Karman (reference 7, particularly pp., 351—356)
decmonstrated this fact for the general two-dimensional flow,
He also suggested that the limiting line is the envelope of
the Mach waves (fig, 1) and thus can occur only in a super—
sonic region, He also took 1ts appearancs a¥ the criterion
for breakdown of isentropic irrotational flow, This general
two—-dimensional theory wes established later by both Ringlebd
(reference 8) and Tollmien (reference 9), Tollmien coérrected
some mistakes in Ringlebl!s paper and, in addition, showed
that the flow definitely cannot continue beyond the limiting
line, The later fact introduced a "forhidden region® in the
flow bounded by the limiting line, This physical absurdity
can be avoided only by relaxing the condition of irrotation—
ality, But, as stated previously, for non-viscous fluids,
the transitiOn from a flow without vorticity to thet with
vorticity can be eccomplighed only by shock waves, which ot
the same time also cause an increase in the enitiropy, i

However, before 1%t can be concluded that the appearance
of a limiting line, or the envelope of Mach waves, 1is the
general condition for breakdown of isentropiec irrotational
flow, it must be proved that the singular behavior of Iimit-
ing llnes is general and not limited %o two—dimensional flow,
This is the purpose of the present paper, First the proporty
of limiting line in axially symmetric flow will be investigated
in detail, Then the goneral three-dimensional prodblem will be
sketched‘ These investigations confixm the results of Ringlebd,
Yon Karman, and Tollmien for these more goneral cases,

Therocfore, by considering only the gteady flow of non—
vigeous flulds, the criterion for breakdown of igentropic
irrotational flow is the appearance of a limiting line, For
the actual motion of a solid body, however, the flow is neither
steady nor non—viscous, Small disturbances always occur and
almosgt all real flulds have appreciable viscosity, The small
disturbances in the flow introduce the question of stability,
In other words, the solution found for isentropic irrotational
flow may be unstable even before the appearance of the limit—
ing line, and tends to transform itself into a rotational flow
involving shock waves at the slightest disturbance, If this
is the cacze, the criterion concerns not the 1imiting line, but
the stabi¢ity 1imits, This prdblem has yet to be solved,
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The effect of viscosity will be limited to the boundary
laysr if the pressure along the surface in the flow direction
never increoases too rapidly, Then outside the boundary layer
the flow 1s isentropic and irrotational, If the gradient of
prossure is too large, the boundary layer will separate from
the surfece, However, at low velocitles such separation only
widens the wake of the body and changes the pressure distri-
bution over the body, But 1f the boundary layer separates
at a point where the veloclty outside the boundary layer is
supersonic, additional effects may appear, The flow outside
the boundary layer in this case can be regarded approximately
as that of a so0lid body not of the original contour dbut of a
new contour including the "dead water' region created by tho
separation, It 1s then immediately clear that the 1ldeal
isontropic irrotstional flow around this new contour may have
a limiting line, Hencé, the actual flow then must involve
shock waves, In other words, the separation of the boundary
layer in tho supersonie¢ region may induce a shock wave and
thus extend its influence far beyond the region o6f separation,
Furthermore, the steep adverse pressure gradlisnt across a
shock wave may accentuate the separation, This interaction™
betweon the separatlon and the shoek wave is frequenily ob—
served in seXperiments,

The gbove considerations indicate the possidbility of
the breakdown of igentropic irrotational flow outside the
boundary layer even before the appearance of the limiting
line, Therefore, the Mach number of the undisturbed flow
at which the limiting line appears may be called the Pupper
critical Mach number,” On the other hand, since shock wavecs
can occur only in supersonic flow, the Mach numbor of the un-
digturbed flow at which the local velocity reachos the veloc—
ity of sound may be called the M"lower critical Mach number, !
The asctual critical Mach number for the appearance of shock
waves and the compresgibility dburble must lie beftween these
two limits, By carefully designing the contour of the body
to avoid the crowding togethar of Mach waves to form an chve—
lope and to eliminate adverde pressure gradisnts along the

surface of the body, the compressiblility burble can be delayed,

AXIALLY SYMMETRIC FLOW

The solution of the exact differential squations for an
exially symmotric isentropic irrotational flow was first ‘given
by Frankle (reference 10), The method was developed independ-
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ently by Ferrari (reference 11}, Thelr method applies par—

. ticularly to the case of supsrsonlic flow o¥eTr a body of

revolution with pointed nose, In thls case, the flow at

the nose can be approximated by the well—~known' golutlon

for a cone, From this solution, the differential equation
is solved step by step, using the net of characterlstilcs
which are real for supersonic veloclties, 1In the following
investigation, the chief concern 1s not the solution of the
partial difforential equation dbut rather the occurrence and
the properties of the limiting line in an isentropic irrota—
tional flow, The general plen of attack is that of Tollmlen
(reference 9), Eowever, here the calculation is based on
the Legendre transformatlon of velocity potential lnstead of
the streem function, : -

If q 1ig the magnitude of the velocity, & the corre-
sponding velocity of sound assuming an isentroplc process,
p the pressure, snd p the density of fluid, the Berndulll
equatlion gives

5 1

. (1 -1 g® N (1 T (1

—— X — ——— —— = e —

P 2 ag? z a° )
N1 q” v—1 &N

B, — g 1 4+ — 2 2

ao® - 2 ag = (, 2 a3 Re

Y

P Y-1 ¢* V=2 Y1 g° T y-1

Z-(-F s 1+ — 5 (5)

po 2 o0 2 a

In those equations, the subscript o denotes quantities
corrcsponding to = 0, and ¥ 1s the ratlo of speclfic
heats of the fluid, Let the axis of symmetry be the x—axis,

" the distance normal to x-akXls be denoted by y, and the

velocity components. along these two directions be denoted
by u and v, respectively (fig, 2), The x-y plane 1s, ™ B
thercfore, & meridisn plane, Then the kinematical relations

of the flow are glven by the vorticity equation . —_—

Vx — 'u.y = Q% N (4)

partlal derivatives are dencted
ou

L5

¥*Throughout this paper

W

by subscripts, Thus v, B é;, vy
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and the continuity equation _ . N
;'.é.(.e.u +.3L<_9_v>~_-o | (5
3= \7 Po oy v Po )

Equations (1) to (5), together with the relation ¢°=u®+ v,

specify the flow completely,

To simplify the problem, a.veloecity potential ¢ deflned
as follows 1s 1lntroduceds .

U = Py v = (py : (6)
' ¢

Then equation (4) 1s identically satisfied and equation (5),
together with equations (1) and (2), gilves the equation’ for ¢,

2 2
u uv v v
— - —— + - —— Fo— (s}
<1 a.2> Pxx 2 a® cpxy <l a.3> Pyy ¥y = (7) .

The characterlstics of thls differential squatlion, to be
called the characteristics in the physlcal plane, are given
by g (x, ¥) = 0, where g (x, y¥) 1is determined by the
following equation .

2 <
u u v
(-%)e'-2Fae(-F)a" -0 ®

It can be easily seen from this equatlion that g 1s real
only when q > a, Therefore, the characteristics are real
only in supersonic regions of the flow,

The meaning of characterlstics in the physical plane is
immedlaotely clear 1f one caleculates the relation between the
slope of a characteristic and the slope of a stream line in
the meridisn or x-y plane, By the definition of the funetilon
g{x,y), the value of g 1is zero, or constant, along a char—
acteristic, Therefore, by writing a quantity evaluated at =
certain constant value of a parameter with that pearameter as
& subscript, the slope of the characteristic in the physical
plane ig ’



NACA TH No, 961 7

( ’“E’: (9)

Along n streamline, the stream function V¥ defined by
following cguations is constant:

\l!:y...e.u \|!=-—-.y._9_.v (10)
v po ! = po
Theroforc, the slope of & streamline is
(iz =7 (11)
ax /y u
Bquations (8), (9), and (11) give
b

@, B e @} 0

—

where B is the Mach angle glven by 8= sin > %f Therefore,
equation (12) shows that the characteristics in the physical
plane are inclined to the streamlines by an angle squal to
the Mach angle, Such lines are the wave fronts of infinitocs—
imal disturbances and arc called Mach waves, In other words,
characteristics in physical planes are the Mach waves In '
that plane, There are two families of Mach waves inclined
symmetrically with respect to each streamline,

If to each pair of values of u and v, there i1s one
pair of values of . x, ¥, then x and y can be considered
as functions of wu, v, 1In other words, instead of taking
x and y as independent varliables u, v cean be used as in-
dependent verlables, The plane with wu and v as coordinates
is called the 'hodograph plane,"™ An equation in tho hodograph
plano corresponding to equation (7) can be obtained by means
of Logendre's transformation, 3By writing
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X = uUx + vy — © (13)

it 1s scen thet

X. = X, X_ =y . (14)

v v =
* ( a2 *uu Xy [qu vy Xuv] (15)

The characteristics of equation (15) are given dy £(u,v)=0
where f 1s the solution of the following differential € (U o
& tion

u3> v 3 uy v
{(1 - -;-5 + —-)Z-; qu fv + 2 ;*‘-2- — -)z; X'U.V fu fv
_{ v® s }‘ 2 o (
+ — =} % =
<1 a® Xv Xyv. fu 16)

. Equation (16) shows that the characteristics in the hodograph
plane depend upon the values of the derivatives of ¥ whiech
must be obtained from equation (15), In other words, the
characterisgties in the hodograph plane change wilth the flow
and are not a constant set of curves as are those in two-
dimenglonal problems,

To obtaln the relation between the characteristics in
the physical plane and those in the hodograph plane it 1is
noticed that equation (9) can be rewritten as

[

} 8 (1)

(dy), ¢ (dx) =~ g, i &g,
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Then equation (8) is equivalent to

(l_”§§> (dy)gs*'z E% (dy) g (ax) + (l_”§§> (dx)gzz L

However, in general, equation (14) gives the following
relation between the differentials of X and y and those
of u and wi :

~

dix = X du + Xy dv

- . (19)
= X'U.V du + X'VV dv
By means of these relations, equation (18) can be transformed
into an guation for (du) and (dv) This transformed

equation can be simplified by using equation (158), The final
relation is

R xuv%[{(l - -ZS)";Z; Xugp (49057

- 2 (@ ) ek @+ {(m T xfleng’ ] o

(eo)

Therefore, if the first factor of equation (20) is not zero,
the variations (du)g and (dv) elong & characteristic in

physical plane must satisfy the rolation

1n° v v
{<l~;5>+')'¢"v qu} (d.u)g e :E T X xuv} (d.u)g (dv>€

v
((i- e XVYJ (dv)ga = 0 (21)
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This ig the same rslation for the variastions (du)s and
(dv), along a characteristic in the hodograph plane as can
be sion from squation (16) and the following relation ob—
tained from the definition of ¢

(dv)f : (du)f = — f 3 f (22)

The trangformed characteristics of the physical plane aand

the characteristlics of the hodograph plane themselves satisfy

then the same first order differential equation, Therefore,
these two types of curves are the same, In other words, the
charactoristics of the hodograph plane are the. representation
of Mach waves in the u—-v plate,

THEE LIMITING LINE

Equation (20) shows that if

Xuu Xgy = Xuva = 0 (22)

then the transformed dlfferential equation for the character—
istics of the physiecal plene, or Mach waves, 1is satlsfied,
Thorefore, if there 1s a line in the hodograph plane along
which the values 0f the derivatives of % arse such that
equation (23) is true, then this line when transferred to

the physical plane will have its slope equel to that of one
family of Maeh waves, Such lines are called the 1imIting
hodograph 1n u-v plane and the limiting line in physical
plane, Since Mach waves occur only in the supersonic regions
it is then esvident that the limiting line must appesa¥ in
these regions, The significance of the adjective ¥limiting!
will be mades clear as other properties of such lines are
investigated,

Now the question arises: Can the limiting hodograph
be a characteristic in wu-v plane? Along & limiting hodo—
graph, equation (23) gives

éy_) - _ Xuuu Xvv T 2 Xuv X'uu.v.'l' Xgu Xuvy

(24)
bt Xuuv Xvv — 2 Xuv Xuvv + Xpu Xyvv
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where the subscript 1 denotes the value along a limlting
hodograph, Now the general differentlal equation for X,
equation (15), is true for the whole wu— v planej ther o
fore; the equation 1s gtill true by differentlagigg it with
respect $0 u and v, The results can be simplified by
using equation (15) 1tself and equation (23), Then at the

limiting hodograph,

a
1w o)+ 3L % X, 2 | BT X X +[<1-.-ll->
[( > VV] uuu [az X U.V] wuv az

v

<

+ %L qu] Xuyv = (¥+1) ;; va—'z 5 Xuv+ (¥-1) 1; Xuy (258a)
v

2 2
v v ‘u.V u
[(=B)*E Hov | Xawr 2 [ Yav | Yo [ (- 35)

¥

LI qu:' Xovvr = (Y-1) "Y; Xyv— 2 ._1_15 Xpp + (Y+1) _Y_: Xuuw (25D)
a a a”

b

Equations (24), (25a), and (25b) are the only avesilabdle
equations involving no higher derivative than the third, On
the other hand, the slope of & characterlistic in the hodo-
graph plane can be celculated by equation (22),

dv b4
(a'—) s - =2 (26)
'llf v

This equation together with equation (16) gives

(6-5)+ F wn} 6D
- “:‘Z'"wxuv} G ) {(1—»-—->+_Y..x u}=0(27)

Thercfore, 1f the limiting hodogreph is a characteristic, then

%3> must satisfy oquation (27), However, a simple calcula-
u
i _
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tion shows that it is not even possible to obtain a relation

between %3 and other quantities not involving the third-
u/q
order derivatives of ¥, Hence, (%1> does not satisfy
/1

equation (27), In other words, the limiting hodograph is

not a characteristic, Transferred to the physical plane,

this means that the limiting line is not a Mach wave, 3But

as shown in previous paragraphs, the limiting line Is evVery=
where tangent to one family of Mach waves, Consequently, the
limiting line must be the euvelope of a family of Mach waves,
Thig property of the limiting line can be taken as its physical
definition,

LIMITING HODOGRAPH AND THE STREAMLINES

At the limiting hodograph both equations (15) and (23)
hold, By elininating one of the second-order derivatlves

say X, the following relation is obtained T
2
e ad
u2 :
1l - —
3
a

The sign before the radical in equation (28) can be either
positive or negative, but not both, This relation will be
used prescntly to show thet the streamlines and one family
of characteristlcs are tangent in the u~v plane,

From equation (10), the differential of the stream
function can be calculated as

W = -y vax+y L 4ay (29)
Po o
In this equatlon, y can be replaced by X, -aCcording to

equation (14) and the differentisls dx and .dy replaced

;i tke differential 4au and 4dv according to equation (19),
en - She i
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av = Xv gL [(7 T Xgu *+ 08 Xu;> du4-<f V Xyv+ U xv€>dv] (30)
S _

Along a streamline, &V = O3 therefore the slopo of the stream—
line in the hodograph plane lg given by

i) - THmiide | (31)
duly  — v Xy ¥ B Xoy

At the limiting hodograph, equation (23) holds; therefore,
equation (31) together with equation (28) gives

2
X 1 - =
»%ﬁ) - (_31 - L8 (32)
u - va uv .
v A~

where the sign before the radical car be either negative or
positive corresponding to the sign in equation (28),

On the other hand, the slope of the characteristiecs in
the hodograph plane is determined by equation (27), By

solving for %%)f and simplifying the result with tho

aid of equation (15),

—

-1
uv v —2— o
. — i/ — 1
31) L R (33)
du/¢

]
1 - z_>.+.x_x
2 vv.
< a Mg 7

The sign before the redical is elther positive or negative
corresponding to the two familles of characteristics, By
using the pogitive sign in conJunction wilth the positive sign
in equation (28), end similarly for the negative slgn,

a

dv 1 - 3y
<du T = = (34)
L TG '
' as +

2
22 .1
as
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Equations (32) and (34) show that the streamlines and one
family of characteristics are tangent to sach other at the
limiting hodograph, This result is the same as that ob—
tained for two—dimensional flow, (See references 7, 8, and
9.) Those cquations when compared with equation (12) for
the slopec of Mach waves in the physical plane yields the
intercsting result that the streamlines and one famlly of
characteristics at the limiting hodograph are perpendicular
to the corresponding Mach waves at the limiting line,

Since -

@), - S

Equation (22) gives the following equation which holds at
the limiting hodograph

. . &2
<l—§) (b0, "+ 2 =5 (), (Wv)l-’-(!—i-‘) (¥)y =0 (36)

This equation can bs reduced to more familiar form by intro—
ducing the polar coordinates in the wu~v plane:

u = g cos §, v = g sin @

where 8 1is the angle between the velocity vector and u—-axlgs,
Then equation (36) takes the form

(wq)ta + (é; —~£§> (bg)," = 0 (37)

This can be regarded as the equivalent of equation (23) for
defining the limiting hodograph, A similar relation exists
for two—dimensional flow, (See references 7, 8, and 9,)

Along a streamline, the ratio between (dv)w and

(du)w is givon by equation (31), By substituting this
ratio in cquation (19), the differential (dx)y and

(dy)w along a streamline is gilven as . : e o
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: 3] A
: u[xtu va B xuv
(ax)y = ” (du)y
. -V Xuv TR Ry |
: . > (38?
v [xuu Xov ~ Xuy J
(ay)y = (du)y
= Xgp ¥ Uy -

At the limiting line, equation (23) is setisfied, Then equa—
tion (38) shows that at the 1imiting line, the streamline has
a singularity, Or, more plainly, %dx)w and (dy)w et thess

points are infinitesimals of higher order than (du)y and
(dv)ys By writing s for the distance measured aleng a

streamline, equation (38) gives immediately

% X
=V gy PR Ny
(ugdy = (89)
- X &
& [qu XVV uv ]
Similarly,
VX -uX
. uu uv
(v,) = - (40)

r 2
q LX X —-X ]
Tuw vv uv

Therefore, at the limiting line, the acceleration along a
streamline is infinltely large, TFurthermore, since the
pressure gradient (p5>W along a streamline 1is

(pg)

g=T Pl =P [u (us)w + v (VS)W] (41)

the pressure gradlent at the limiting line is 2lso infinitely
largse, ’ . .
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Such infinite acceleration and pressure gradient lead
one t0 suspect that the fluid is thrown back at the limiting
line, In othor words, the streamlines are doubled back at
this 1linc of singularity, To investigate whether this is
true, tho character of the relatlon X, ,, %gg = Ryg® =
along a streamlins has to be determined, If the dcorivative
of this expresslon along a2 streamline is not zero, then

Xuu Xvv — Xuv £ has only & sinple zero at tha intersecbion
of the 1imiting line and the streamline, OConsequently, the
differentials (dx) and (dY)W will change sign by passing

through the 1imiting hodograph in 4u-v plane along a stream—
line, Honce, the streamlines will double back and form a
cusp at the limiting line, The derivative of ¥, Xyv —Xuva

along the streamline can be calculated with the aid of equa-
tion (30)

a ‘ 2 _
[du (X vv - Xuv )]1 a quu xvv - x'1.7.17 xuuv + qu Xuvv

v X -
+ uu

Xy
{quv %ovr™ 2 Xyy Xuvv'*‘x'uu vav} (42)
vv

—_v X  u.
uv

The exprossion on the right of equation (42) cannot be reduced
to zero by the avallable relations, which consist of equation
(23), equation (15), and differentiated forms of equation (15).
Pherefore, the expression concerned goenerally has only a simple
zero at the limiting hodograph and the stroamlines are doudled
back at the 1limiting line, It will be shown later that there
is no solution possible beyond the limiting line, Hence, the
name limiting line,

ENVELOPE OF CHARACTERISTICS IN HODOGRAPE PLANE AND

LINES OF CONSTANT VBLOCITY IN PHYSICAIL PLANE

Sinco the limiting line 1s the envelope of the Mach waves
in the physical plane, it is interesting to see whether there
is also an envelope for the characteristics in the hodograph
plane, The characteristics in the <uv—-v ©plane are dstermined
by equation (26), The envelope t0 them can be found by olim-

inating (%%)f between cquation (26) and the following oquation
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{G—_E:)'P;vsxvv} ('E’E)i,‘{g“% X'uv}=° (23)

which is obtained by equating to zero the partigl derivative
of equation (26) with respect to (%E)f, The result can be
simplifiod by equation (15), and then it becomes simply

- u24;v2 . uzzz - uﬁ:% (44)
a a a
Thig 1s zatisfied by either
a=.0 . (45)
or
w4+ v® = a® (46)

The first condition, equation (45), when substituted into
equation (26) gives _

(47)

4 g

.‘E’.) = .
du f,a=o0

which shows that the circle of maximum velocity correspond-
ing to a = O, is the onvelope 0f the characteristics 1n hodo~
graph plane, The second conditlion, oguation (46), 1is the
spurious solution, sincoc generally the characteristlc at

q=4a 1is not a tangent to the circle q = ua, Hence a = 0

is the only envelopo, i :

Tho lines of constant velocity in the hodograph plane
are sgimply circles, Therefore

@%>=“§ _ (48)

.L
?

By means of this relation and equation (19), the slope of the
llnes of constant velocity is given as

xuu - B Xy

(49)

P S B IR
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This equation together with equation (30) gives the following
interesting relation

In other words, a line of constant velocity in the physical
plane is perpendlcular to the streamline in the hodograph
plane at the corresponding points,

(5.0)

du)w

THE LOST SOLUTION

Throughout the previous calculation, the possibility of
using the Legendro transformation ls assumed, This requires
that for cach pair of values of u, v there is one and
only one pair of values of x, y, However, it is not al—
ways tvuo, It 1s possible to have a number of points in
the physical plene having the same value of u and v, If
this is the case, then evidently 1t is impossible to solve
for x and y from the pair of functlone u=u (x,y),
v=v (x,y)s Mathematically, the situation is expreqsed by
saying that the Jacobian d(u,v)/d(x, y) vanishes in the
physical plane, Or

Uy Ty — Uy Vy = 0 (51)

However, thig is also the condition for & functional relation
between u and vy for example, v can be exXpressed as a
funetion of wu, In other words, u and v are not independ—
ent, Hence if a solution is "lost" or not included in the
family of solutions allowing Legendre transformation, then for
that solution,

v = v{u) - (B2)
It is seen that equation (51) is then identically statisfied,

By eliminating op from the continulty equation, there
is obteined

-] 3

u uv v v
1.._.._>u -~ 5T (uy + v +(1—-,-—->v +Z = 0 (53
( aa = aa x) ag ¥y v )
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This equation can be rewritten in the following form by using
equation (52)

a® du v

The vorticity equation, equation (4),can be sxpressed as

izu—u = 0
Yy

(55
du * )

From equations (54) and (565), it is possible to solve for
u and Uyge The result is

X
r 2 d -1 a a
. (1_3_>._ o uv dv, (l_z_) <_._V. ]u
L a® a® du a® du

da 2 dvi2
(1.._.. -2 Z T (DY (EF == T (oew)
a?® du a®/ \du . ¥ du

By differentiating the first of equation (56) with respect
to y, the second with respoct to =x, +the following rela-
tion iy obtained by subtractions

(582)

v{d
fl
{
<l

2

i x u_ + =0 (57)
du2 v
Therefore R
d f -
gy fly)= x (58)
du y
or

£(y) ~ =

iy
du

where f£(y) is an undetermined function of y, However,
equation (55) shows that for 1ines of constant values of o

where du = uy (dx)u + uy (dy) o,
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(%Z) m - —E%~— = constant (59)
*u du

A

Hence, linoes of consfant values of u and v are stralght
lines, This restriction reduces the function f(y) in
sauation (58) to & numerical constant, Put f(y)=EK, squa—
tion (58) is then .

K - x
vy o= = , (50)
d-u e —— o

Therefore lines of constant value of u and <+ are radial
lines passing through the point =x = K, Thus the lost solu-
tion is nothing but the well—known solution for the flow
over a nonlcal surfacs,

From equation (59), it is seen that lines of constant
veloclty are perpsendicular to the tangent of the uv—v cuyxve
at the corresponding points, By substituting the valus of
1

7 from oquation (57) into equation (56a), a relation between

u and v ig obtained:

a2 2\ -3 ]
e GRS CIREE ST (1=2)=0  (e1)
du® a® u a" du a®

This is the differential equation for determining the hodograph
represcenting the flow over a cone, Figure 3 shows the hodograph
for a cone of 20° semivertex angle and with a velocity at thée
surface of cone equal to 0,35 ¢, The maximum veloclty is ¢ —
that is, the value of g corresponding to a = 0, Figure 3

is drawn from data given by Taylor and Maccoll (referesnce 12),

% may well be mentioned here that the lost sodélution for
the axially symmetric flow is not limited to supersonic veloc—
ity as 1s the pase for two—-dimensional flow, In fact, Taylor
and Maccoll show that for small forward velocity of the cons,
supersonic velocities occur only Just after the heed shock
wave, The velocity decreases as the gurfacc of the cone is
approached, Finally, it bescomes subsonic for points near the
surface of the cone, Figure 4 shows a few examples taken from
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their calculations (reference 12), The dotted curves in the
figure are the Mach waves, The dotted straight lines are

the boundaries beiween the superSOnic and the subsonic regions,
FPurthermore, spark photographs of a conical shell in actual
flight taken by Maccoll (reference 13) do not indicate the
presence of “shock waves in reglons of flow where such transi-
tion from supersonic to subsonic velocities is expected, '
Thereforc, at least for this particular type of flow, a
smooth transitiOn through sonic velocity actually takes

place,

CONTINUATION OF SOLUTION BEYOND THE LIMITING LINE

Since it 1g shown in a previous paragraph that the
stroamlines are generally turned back at the limiting line,
the question arisgest Is it possidle to continue the solution
beyond the limiting line?! Of course, there are two ways of
continulng the solution: The new solution le joined elther
gsmoothly to the given golution at the limiting Iine or with
a discontinuity, As shown before, the limiting 1ine 1s the
envolopo of one famlly of the Mach waves, Then at every
point of thig line its direction differs from that of The
streamline By an angle equal to the Mach angle, 3But the
Mach angle i1s not zero except at polnts where the velocity
of fluid has reached the maximum velocity and the ratio
ﬁ = 0, Therefore, the limiting line generally does not
coincide wlth the streamline, and the discontinulty at the
Junction of the solution at the limiting line cannot be that
of a vortex sheet, The only other type of discontinuity is
the shock wave, However, the anglc between the limiting line
and the flow directlion 1s .equal to the Mach angle, Then ac—
cording to the result of the theory of shock waves, the dis-—
continuity across such a line vanishes, In other words, '
there cannot be a discontinuity at the limiting line, There—
fore, it i1s impossible to join a new solution at the 1limit—
ing line with a discontinuity,.

As to the second possibility of Jjolning a new solution
smoothly at the limiting line, it is scen that the flow beyond
the limltirng line must be irrotational and isentropic since
the limiting line cannot be & shock wave, There are only two
types of isentropic irrotational flow; namely, one that allows
the Legcndre transformation, and one that does not, the "lost
solution,® Investigate the second alternative first, If the



NACA TN Ho, 961 * 22

gsolution heyond the limlting line belongs to the so-called
lost solution, then since the Junction at the limiting line
must be smooth, the values of wu and v at the limiting
line must also satisfy equation (81), But the slope

<§Z> ot the limiting line is given by equation (24), The
u/l

-] .
second derivative <%-%>1 will then involve the fourth
u .

order derivatives of X, BPBesides these expressilons, the
available relations are equationg (15), (23), (2Ba), (25d),
and three morc equationsg obtained by differentiating equetlionsg
(25) with respoct to uw and v, However, it is still impos—

sible for (%5)1 to satisfy an equation like equation (61)

where no derivative of X appears, Hence, the limiting
hodograph doeg not satisfy the equation for the lost soluw
tion, 1In other words, the lost solution cannot be used to
continue the flow beyond the limiting line,

The only remaining possibilility 1s to continue the flow
smocthly by another solution obtainable by a legendre trans—
formatlion, Smooth continuatlon means that the values of u,
v, and p must be the same at the Junction, the limiting
line, Since shock waves do not appear, isentroplc relations
sti1ill hold, The density p 1is determined by velocity only,
The value of uvw and v are determined by the coordinates
in the hodograph plans, The position of the limiting line
in the physical plane is determlned by Xy, X ye Therefore,

the problem can be stated as follows: At a certain given
curve u(A), v(A) in the hodograph plane, the limiting
hodograph, the values of ¥,, Xy are giveny A 1is the

parameter along the given curve, It is required to deter—
mine a new solution of the differential equation {equation
(15)) with these initial values, First of all, it is seen
that with the given data, the left—hand sldes of the follow-
ing equations are given:

d . du dv
an w? uu 3y uv T (62 )
d , du dv
o e = Xr T Kee 2 (620)
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Thereforo
- dv a du )
= e o o+ b—
Xar = |7 3% Yo Y In (xv)] = (632)
X -<§v>a %o =X L o(x )+ S22 (x )]/tau>3 (63D)

By substituting those values into equation (15), the sscond—
degree terms reduce to

o0 ¢ 2
2 dv 4 da 4 du
_ =-—-<x>+--—cx>]x /(—-—
Xau Xov — Xuv [dx an Yo odaan dy u v/ Naa

v [ (xv)r/é‘-:)a e

which is linear in ¥, y. Therefore Xy;; can be uniguely

determined by equation (15), In other words, with the given
data, the second order derivatives of X at the gilven curve
u(A), v(A) can be determined uniquely, in spite of the fact
that the differentinl equation (15) is of second degree,
Friocdrichs and Lewy (refercnce 13) have shown that under
these circumstances, the function X within a region R
(fig, 5) bounded by two characteristics and the given curve
ls uniquely detoermined except for an additional coanstant,
Consequently there can bo only one golution corresponding to
the given date at the limiting hodograph, However, this solu-
tion is the very one which gives the reverse flow at limiting
line, Therefore, it is impossible to continue the solution
beyond the limiting line ovea by a Legendreée transformation,

Since all three alternatives fail to offer a way of con—
tinuing the solution, the limiting line ieg truly an impossible
boundary to cross, In other words, tho region beyond the
limiting line is a forbidden reglon, This physical absuriity
can be resolved only by the breakdown of igentropic irrote~
tional flow,
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GENERAL THEREE-DIMENSIONAL FLOW '

The methods used in previous sections for investigating
the axially symmetriec flow can be easily extended to the
genersal three-dimensional case, In the present section, this
investligation will be sketched dbriefly and the results indi—
cated,

Let the three components of veloclty along the three
coordinate axes =x, ¥y, and % be denoted by wu, ¥, and
w, respectively, Then by introducing a velocity potential
¢ defined by

Wsgpn T Eeg v, (65)

the differential equation for ¢ of an isentropiec irrotational

flow can be written as (reference 7) .

(cpxx + Cyy + (Pzz) =

2 2 2 '
WP F T Pt W, 2V, 2Wup, g + 2UTEL (66)

If, for every triad of wu, v, w, there is only one triad

of x, ¥y, 2z, then the Legendre transformation can be
used, Thus

X = UX + VY + WZ — @ (67)
and

X, = x, Xg = ¥y Xy= 2 (68)

The differential equation for ¢, equation (66), 1s then
transformed into i

2> [Bc_yzaf CA— G° + AB- H2J= u® (BO-7%) + v° (04—~ %)
. ' (69)
(AB— E”) + 2vw (GE— AF) + 2wu (HF— BG) + 2uv (FG~CH)
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where the following notations are used

F=X G=X H=%X (70)

B=X C=X vw? wu' uv

d=X vv! ww'

au!?

By analogy with the axially symmetric case, the limit—
ing hodograph surface 1s defined as the surface in the u,
v, w space, or hoddgraph space, where the following rela-
tion holdsi

@ MM e
H o

e}
7 = 0 : (71)
"]

The properties of this limlting hodograph and the corregpond-
ing limiting surface can be found by considering the behavior
of streamlines and charactoeristics at such surfaces,

Fron equation (68) the differentials of x, y, and =z
can be written as

dx = A du + H dv + G dw _ (72a)
dy = Hdu + B dv + F dw (721)
dz = G du + P dv + C dw (72¢)

Along a streamline, the differentials dx, dy, and dz must
be proportional to wu, v, and w, respsctively, Thus the
equation of a streamline in physical space is

(ax),  (ay), (dz)
Y = Y- , v (73)
1 v w R

where the subscript WV indicates values taken along the _
streamline, The equation of a streemline in hodograph space
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igs obtained by eliminating 4z, 4y and dz from equatlon
(73) by equation (72), The result s

(du) (av) (dw)
——— = A = . (74)
au + hv + gw Tu + By + Fw  gu + fv + ew
where a is the_co-factor of A 1in the determinant A of
equation (71), b the co-factor of B, and so forth, Equa-

tion (74) can be used, in turn, to eliminate two of the three
differentials du, dv, and dw in the right of equation
(72)e The result is

vwA du’

(ax), = (752)
V' Zu o+ By 4 r; I
A 4
(dy)w = = b = Ey (751)
hu + bv + fw
wA dw
(dz)w == (75¢)

gu + fv + cw

At the limiting surface, A = O as defined by equation (71);
therefore the streamlines have a singularity there, Similar
to the axially symmetric flow, the streamlines generally are
turned back and form a cusp at this surfacs, The accelern—
tion and the pressurs gradient are, of course, infinitely
large at such places,

The characteristic surface g(x,y,z) = 0 in physical
space is determined by the equation

2 2 & 2
a [:gx + gy‘ + g ]:

2, 2 2, =2 2, =
ulg_*+ v gy +wig, +2vwgygz+Bwugzgx-}-zuvgxgy (78)
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Since this equation 1s a secondwdegree equation, there are
two families of surfaces passing through each point, Theseo
surfaces are the wave fronts of infinltesimal disturdances
in the flow and can be called the Mach surfaces, The char-
sctoristic surface #£{u, v, w) = 0 in the hodograph space
is determined by the equation

a” [(mc)fuz + (C+a)f "+ (a+BYE -2 £.£ 26 £ f - 2E fu'fv]
- < <] =] Q <
= u [G £, +B fw—zﬂ‘fvfw:’+v [c fa v & £, —2C fwfu:|

] 2 2 .
+ W [3 £, +4& £, — 2E fufv] + 3vw [H P+ @ £,00 -

2 . b=}
-7t sz fw] + 2wu [E £E +FELE =0 f =3 fwfu]

<
* 2uv [e gf +PLL —~HEIP-0f fv] (77)

By transforming equation (76) for Mach surfaces to hodograph
space, it can be shown that the transformed equation is
satisfied sither by the characteristics in hodograph spacse
determined by equation (77) or by the limiting hodograph
determined by equation (71), Therefore, here again the
lipiting surface 1ls the envelope of a family of Mach surfaces,

By using equations (74) and (77), 1t is possible to show
that the streamlines 1in the hodograph space are tangent to
the characteristice surfaces a2t the llmliting hodograph, Fur—
thermore, by using equations (69), (71), and (74), the inm
clination of the streamliines &t the limiting hodograph can
be calculated, In fact, if (ds)® = (4u)®+ (av)®+ (aw)?,

a® = u® + v® + w®, the following relation is obtained.
ds q q
dq ) a a

This relation is really equivalent to equation (32)., 1In
other words, at the limiting hodograph, the inclination of
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the streamlines and characterlisgtles to the g = constant
gurface is equal to the Mach angle (fig, 6), It thus seems
the brenkdown of general steady isentropic irrotational flow
of nonviscous fluid is connected with the appearance of the
envelope of Mach waves in physical space and the tangency of
streamlincs and characteristics 1n hodograph space,

Californla Institute of Technology,
Pasadena, Calilf,, August 24, 1943,
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